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a linear measurement (i.e. encoding) is
performed to a length-N K-sparse signal
vector xwith a MxN measurement matrix A
to obtain a length-M measurement vector y,
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1
METHOD AND APPARATUS FOR
MEASURING AND RECOVERING SPARSE
SIGNALS

FIELD OF THE INVENTION

The application relates to compressive sensing technology.

BACKGROUND OF THE INVENTION

Compressive sensing (CS) is a recently developed tech-
nique. Considering the fact that a large part of natural and
artificial signals have the sparse or near sparse property, the
compressive sensing technique can find applications in many
different areas like compressive imaging, compressive sam-
pling, signal processing, data stream computing, and combi-
natorial group testing, etc. The basic idea of compressive
sensing is that a sparse signal x (a signal is referred to as
sparse if it contains much more zero elements than non-zero
elements) with length-N can be accurately recovered from a
linear measurement y=Ax of length-M, wherein A is the MxN
measurement matrix, M<<N.

The reconstruction can be performed through minimizing
|||, that explains the measurement vector. As this minimiza-
tion problem is NP hard, sub-optimal algorithms have been
investigated. Major classes of computationally feasible
sparse signal recovery algorithms include convex relaxation,
which approximates the 1, minimization problem by an 1,
minimization problem with p often chosen as 1 and solves this
problem using convex optimization; matching pursuit, which
iteratively refines a sparse solution by successively identify-
ing one or more components that yield the greatest quality
improvement; and Bayesian framework, which assumes a
priori distribution that favors sparsity for the signal vector,
and uses a maximum a posteriori estimator to incorporate the
observation. Despite their relatively good performance in
practice, they are most suitable for signals with continuous
values. For sparse signals with digital values, e.g., when deal-
ing with monochrome images, these algorithms are less suf-
ficient as they cannot exploit the digital nature of the source,
which, if utilized properly, can greatly enhance the recovery
accuracy.

Therefore, there is a need of a new compressive sensing
technique that can fully exploit the digital nature of signals.

In addition, in almost all applications, it is preferred that the
measurement matrix A is sparse, i.e., it contains much more
zero entries than non-zero entries in each column. The advan-
tages of sparse measurement matrices include low computa-
tional complexity in both encoding and decoding, easy incre-
mental updates to signals, and low storage requirement, etc.
Much research has been devoted to CS with sparse measure-
ment matrices, but most of them fail to achieve the linear
decoding complexity and performance bound at the same
time. Typical examples of existing algorithms include match-
ing pursuit and convex optimization. The matching pursuit
type of algorithms can asymptotically achieve the lower
bound of the sketch length with a linear recovery complexity.
However, numerical results have shown that the empirical
sketch lengths needed in this type of algorithms are always
much higher than the asymptotic bound. The convex optimi-
zation type of algorithms, on the other hand, can achieve the
lower bound of the sketch length both asymptotically and
empirically, which indicates an advantage in terms of mea-
surement number in practices. For example, with the number
of non-zero elements K=50 and signal length N=20000, it
was shown that matching pursuit needs about 2000 measure-
ments while convex optimization needs only about 450 mea-
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surements. One major disadvantage of the convex optimiza-
tion type of algorithms is their higher recovery complexity,
which grows ina polynomial order with the signal length N as
O(N>).

Therefore, there is a need of a new compressive sensing
technique that can achieve the linear decoding complexity
and lower bound of sketch length empirically at the same
time, with sparse measurement matrices.

OBIJECT AND SUMMARY OF THE INVENTION

To better address above two concerns, there are provided
two technical solutions, one is to provide a new compressive
sensing technique that can fully exploit the digital nature of
sparse signals, and the other is to provide a new compressive
sensing technique that can achieve the linear decoding com-
plexity and lower bound of sketch length empirically at the
same time with sparse measurement matrices.

Based thereon, in a first aspect of the invention, there is
provided a method for processing digital sparse signals. The
method comprises the step of: performing a linear measure-
ment to a length-N sparse signal vector x={x,} with a MxN
measurement matrix A to obtain a length-M measurement
vector y, wherein the measurement matrix A is denoted by:

Al
A= ATl
Apllp

wherein A 11, is a sub-matrix of the measurement matrix
A, for d=1~D, I1,is a NxN random permutation matrix, and
A, is an JxN matrix which is denoted by:

(d) (d)
ayj..-a; 0

Ag=

(d) (d)
0 ajgy...ayp

wherein M<<N, J*[L=N and each entry X, in the sparse
signal vector x is taken from a finite set Q={X,=0, X, . . .,
X .1} with X, anon-zero figure for g=1~Q-1, and Q the size
ot the set, wherein the measurement symbols generated from
the same permutation matrix are referred to as one dimension,
and the D is the total dimension number.

Advantageously, the method may further comprise the
steps of: using D maximum likelihood detectors to respec-
tively perform maximum likelihood detection for D dimen-
sions, wherein the dth maximum likelihood detector is used
for performing maximum likelihood detection for the dth
dimension; repeating above step for a plurality of iterations
until a predetermined condition is satisfied; and estimating
the source symbols in the sparse signal vector based on the
output of the Dth maximum likelihood detector in the last
iteration.

The measurement matrix A in the first aspect of the inven-
tion allows simple maximum likelihood detection in each
dimension, which fully exploits the digital nature of sparse
signals and provides a computationally feasible locally opti-
mal detection for each dimension. The multi-dimensional
structure of measurement matrix enables iterative informa-
tion exchange between dimensions to get a near global-opti-
mal estimation result.
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Furthermore, the measurement matrix A in the first aspect
of the invention is sparse, i.e., it contains much more zero
entries than non-zero entries in each column. The sparsity of
measurement matrix has several attractive properties, like
low computational complexity in both encoding and recov-
ery, easy incremental updates to signals and low storage
requirements, etc. These advantages make the technical solu-
tion in the first aspect of the invention a potential and practical
solution to compressive sensing with sparse digital signals.

In a second aspect of the invention, there is provided a
method for processing analog sparse signals. The method
comprises the step of: performing a linear measurement to a
length-N K-sparse signal vector x with a MxN measurement
matrix A to obtain a length-M measurement vector y, wherein
the measurement matrix A is denoted by:

Al
A= Ayglly

Apllp

wherein A _I1, is a sub-matrix of the measurement matrix
A, for d=1~D, I1, is a NxN random permutation matrix, and
A, is an JxN matrix which is denoted by:

(d)

ad)...d) 0

apr

() (d)
0 ajgy...ajyp

wherein K<<N, M<<N, J*[.=N and the sparse signal vec-
tor x={x,}eR ~, wherein the measurement symbols gener-
ated from the same permutation matrix are referred to as one
dimension, and the D is the total dimension number.

Advantageously, the method may further comprise the
steps of:

i. for each element }N/j("o in §, for d=1~D, j=1~J, judging
whether the }NIJ@ equals to 0, wherein ¥ is initialized as y=y,
and }N/j("o is the jth element in the dth dimension of ¥;

ii. 1f the }N/j("o equals to 0, setting Xy 1, yy7.,=0, for I=1~L;
wherein I1 (1) is the index of X, in the dth permutated version
and IT,"'(i) the inverse operation of IL,(i);

and the method further comprises the steps of:

u. for each source symbol X, in the sparse signal vector X,
for i=1~N, judging whether the following equation is satis-
fied,

+(dm)

+(dn)
Yy
Jgdm)

%@ﬁ

——=——— Vd,=1~D,d,=1~D,d, +dy;
a9 A

() f(m) ) )

v. if it is satisfied for a pair of (d,,, d,), setting

~(dm)
Y{%)

Ji
X =

5

)
a
) )

wherein j,“%=|(TT 4,(1)-1)LI and 1, =mod(TT 2,0-1,L)+1.
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4

and after above steps, the method further comprises:

p. updating ¥ by subtracting the recovered sparse signals
from the measurement vector y, by following formula:

y=y-4%

wherein X represents the recovered sparse signal vector, in
which the un-recovered symbols are set to 0;

g. repeating above steps for a plurality of iterations until a
predetermined condition is satisfied.

The special structure of the measurement matrix A in the
second aspect of the invention leads to some interesting fea-
tures of the measurement symbols, as will be explained later,
which can be exploited to design a very simple recovery
algorithm in each iteration. An iterative process is used to
recover the source signal step by step, starting with symbols
easier to recover, and canceling the contributions of already-
recovered symbols to facilitate the recovery of other symbols.
By repeating such a detection and cancellation operation, a
near global-optimal solution can be obtained. The complexity
needed grows only linearly with the source signal length N.
The multi-dimensional structure and the random permutation
matrices guarantee that each measurement statistically pro-
vides (directly or indirectly) some useful information to all
source symbols, which is crucial for the good performance of
the proposed technique.

Furthermore, the technical solution in the second aspect of
the invention can achieve the empirical sketch length lower
bound and linear complexity at the same time. The good
empirical performance and low complexity makes it a good
and practical alternative solution to compressive sensing with
sparse measurement matrices.

In addition, according to one embodiment of the invention,
there is provided an apparatus for measuring and recovering
sparse signals comprising: a measuring means, for perform-
ing a linear measurement to a length-N sparse signal vector
x={x,} with a MxN measurement matrix A to obtain a
length-M measurement vector y, wherein the measurement
matrix A is denoted by:

Al
A =| Aylly

Apllp

wherein A 11, is a sub-matrix of the measurement matrix
A, for d=1-~D, I1 ;is a NxN random permutation matrix, and
A, is an JxN matrix which is denoted by:

(d)

af)...d?} 0

ayr

(d) (d)
0 ajyy...ajy

wherein M<<N, J*L.=N;, the measurement symbols gener-
ated from the same permutation matrix are referred to as one
dimension, and the D is the total dimension number; and a
recovering means, for recovering the length-N sparse signal
vector x={x,} from the length-M measurement vector y.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is explained in further detail, and by way of
example, with reference to the accompanying drawings
wherein:
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FIG. 1 shows a flowchart of processing digital sparse sig-
nals according to one embodiment;

FIG. 2 shows the principle of the interactive algorithm used
in FIG. 1;

FIG. 3a shows the comparison of the rate-distortion per-
formance between the embodiment of FIG. 1 and two con-
ventional techniques with p,=0.1;

FIG. 3b shows the comparison of the rate-distortion per-
formance between the embodiment of FIG. 1 and two con-
ventional techniques with p,=0.05;

FIG. 4 shows a flowchart of processing analog sparse sig-
nals according to another embodiment;

FIG. 5 shows the relationship between the measurement
number M and K log,(N/K) of the embodiment of FIG. 4;

FIG. 6a shows the relationship between the recovery fail-
ure probability and a of the embodiment of FIG. 4 with
p;=0.1; and

FIG. 6b shows the relationship between the recovery fail-
ure probability and a of the embodiment of FIG. 4 with
p,=0.05.

Throughout the above drawings, like reference numerals
will be understood to refer to like, similar or corresponding
features or functions.

DETAILED DESCRIPTION

Hereinafter, the technical solution of the above first aspect
ofthe invention and the technical solution of the above second
aspect of the invention will be described respectively in great
detail.

FIG. 1 shows a flowchart of processing digital sparse sig-
nals according to one embodiment.

In Step S11, a linear measurement (i.e. encoding) is per-
formed to a length-N digital sparse signal vector x with a
MxN measurement matrix A to obtain a length-M measure-
ment vector y, wherein M<<N.

Consider digital sparse signal vector x={x,} with indepen-
dent and identically distributed (i.i.d.) entries. The value of
each entry X, in the sparse signal vector x is taken from a finite
set Q={X,=0,X,, ..., X, } with X a non-zero figure, for
q=1~Q-1, and Q the size of the set. Suppose that each entry
X, has a probability p, of being “0” and a probability
p, (@=1~Q-1) of being X,,. Since x is sparse,

o1
po>> " py.
a1

Based on the theory of compressive sensing, x can be
recovered from the measurement vector y as below,

y=Ax+n (€8]

wherein, n is a length-M noise vector with zero mean and
E(Inl*)=Mo>

In this embodiment, the measurement matrix A is designed
as follows:

ATl @
A= Ayglly

Apllp

6

wherein A I1,(d=1~D) s a sub-matrix of the measurement
matrix A, I, is a NxN random permutation matrix, and A , is
an JxN matrix which is designed as follows:

(d)

ad)...d) 0

ayr

®

Ag =

(d) (d)
0 ajgy...ayp
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wherein J* =N, the measurement symbols generated from
the same permutation matrix are referred to as one dimension,
and the D is the total dimension number. The permutation
matrices {I1,} are independently and randomly generated for
D dimensions. The non-zero entries in {A} are Gaussian
random variables.

The encoding process can be implemented as follows. The
source symbols in the digital sparse signal vector X are inde-
pendently permutated D times. Every permutated version is
divided into J=N/L groups, each containing L. symbols. The
symbols in the jth group of the dth permutated version are
weighted by the corresponding non-zero entries in the jth row
of A, and then linearly superimposed to generate the jth
measurement symbol in this dimension. The number of total
measurements M is determined by the group length L, the
dimension number D, and the signal length N as M=ND/L..

After encoding, a quantization process is applied to digi-
talize the measurement symbols. The quantization error is
represented by the noise vector n in formula (1). Let S denote
the number of quantization levels, and P_,,,,,(s) the probabil-
ity that a measurement symbol is quantized to level-S. The
number of bits needed to represent one quantized measure-
ment is then

35

s (€3]
b= " Pauan(s)- 108y (U pguan(s))

s=1

Thus the total number of bits needed to represent x is
B=bM=bND/L, and the average number of bits needed per
source symbol is

45
5 bD/L ©)
n= N

The average bit number per source symbol can be adjusted
50 via the selection of D, L and S.

The structure of {A,} in formula (3) enables us to use
maximum likelihood detection (ML) for each group of L
symbols in each dimension. By choosing small values for L,
the computational complexity of ML detection can be con-
trolled. ML detection can fully exploit the digital nature of the
source signal, and provide a locally optimal solution for each
dimension. The multi-dimensional structure allows the itera-
tive information exchange between dimensions to achieve a
near global-optimal estimation. The independent random per-
60 mutation matrices in different dimensions guarantee that sta-

tistically each measurement can provide (directly or indi-

rectly) some useful information to all symbols in the digital
sparse signal vector X, as the symbols contributing to different
measurements in one dimension might be group together and
5 contribute to the same measurement in other dimensions.

This means that the information provided by one measure-

ment to its associated L symbols might help the detection of

55

o
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other symbols if these L symbols are group with other sym-
bols in other dimensions. Such a property is fully exploited in
the iterative recovery algorithm to greatly enhance the noise-
resistance ability of the proposed technique.

Based thereon, in Step S 12, D maximum likelihood detec-
tors are used to respectively perform maximum likelihood
detection for D dimensions. That is to say, each maximum
likelihood detector is responsible for the detection of one
dimension, as shown in FIG. 2. FIG. 2 shows the principle of
the interactive algorithm, where “DET-d” is the local detector
of'the dth dimension, “T” denotes a delay of one iteration and
“/” denotes the division operation.

Within each local detector, the ML detection is performed
to each group of L symbols based on their noisy measurement
symbol and a priori information. The output of each detector
is a posteriori information of the source symbols in the digital
sparse signal vector x, which is used to refine the local detec-
tion in other dimensions in the next iteration.

The variables involved in FIG. 2 are defined as follows.

POx=X 2 The a priori probability of x, being X,
(q=0~Q-1) in the dth dimension.

pPx~=X 2): The a posteriori probability of x, being X,
(q=0~Q-1) in the dth dimension.

e“Dx=X 2): The extrinsic probability of x; being X,
(q=0~Q-1) in the dth dimension.

The a priori probabilities are initialized as f)(l)(xi:Xq)rp B
for i=1~N and q=0~Q-1 in the first iteration, and the extrinsic
probabilities wherein initialized as e (x,=X p—1 for V. din
the first iteration.

Consider a particular measurement-j in the dth dimension,
denoted by y,”. Let {i,”,1=1~L} be the indices of the L
source symbols that contribute to y]@. The values of {ij,l(“o,
Vj,1} are determined by the permutation matrix I1,. The a
posteriori probabilities of these I symbols are calculated
using the ML detection as

p(d)(x X, ] ! Z exp ©
@ = =
i T ara? et
o=Xg
L L
d d -
i - Z a(j,l)’ | - | | P(d)(x;(d) = Cl’]
ft L it
2 forl=1~1L

The summation in formula (6) is over all possible vectors
ceQ” with the Ith element fixed to X  The extrinsic probabili-
ties are calculated by extracting the a priori probabilities from
the a posteriori probabilities,

M
The a posteriori probabilities generated in the dth dimen-

sion are used to update the a priori probabilities in the (mod(d,
D)+1)th dimension as

R A A )

Pomod@DI 5 = Y= p@ (=X yelmod D1+ Ui =y

®
Note that e+ (x =X ) is generated in the (mod(d,
D)+1)th dimension in the previous iteration, so it should be
prevented from circulating back to the (mod(d, D)+1)th
dimension again, which is the basic rule of iterative detection.
This is realized by the division operation in formula (8).
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Then in the Step S13, repeating above procedure for a
plurality of iterations until a predetermined condition is sat-
isfied.

The predetermined condition may for example comprise
any of the followings:

a fixed number of iterations has been reached;

the difference between the a posteriori probabilities gener-

ated in the Dth maximum likelihood detector in the two
successive iterations is below a pre-defined threshold.

Last, in Step S14, the source symbols {x,} in the digital
sparse signal vector X is estimated based on the output of the
Dth maximum likelihood detector in the last iteration.

For example, hard decisions are made for source symbols

{x.} as

X=X, ()]

with

g; = arg max({p®(x; =
q

X)lg=0~Q-1} 10

The complexity of the above proposed iterative algorithm
in this embodiment is O(NDQ*/L), which is much lower than
that of the optimal solution O(Q™) as L is much smaller than
N and does not grow with N. Notice that a smaller L. will lead
to a larger measurement number M for a fixed D. Then by
adjusting the values of D and L, different tradeoffs between
the computational complexity and measurement number can
be achieved.

In the following text, the performance of above proposed
technical solution is illustrated using numerical results. Con-
sidering binary source signals in the digital sparse signal
vector X with x, €{0, 1}. The entries of X are 1.i.d. variables
with a probability p,(p,) of being “0” (“1”) and p,>>p,. The
measurement matrix A is generated according to formula (2)
and (3) with the non-zero entries i.i.d. Gaussian random vari-
ables with zero-mean and unit variance. The measurement
matrix A is normalized such that each row has a unit norm.
The quantization level is fixed to S=5 with the following
quantization rule, where Quan(x) represents the value of X
after quantization.

, if x<-04

if —04=x<0
if x=0

if 0<x=<04
if 0.4<x

an

Quan(x) =40,

Note that with a digital sparse signal vector X, the linear
measurement symbols generated using the measurement
matrix A defined in formula (2) and (3) (before quantization)
have a large probability of being “0”. If a zero measurement
symbol appears, we can conclude with a high accuracy that all
L source symbols associated with it are zero, which will be
very helpful for the detection of other source symbols in the
iterative recovery algorithm. Thus, a specific quantization
level for “0” in formula (20) is used to distinguish it from
other values. We use Monte Carlo simulation to obtain the
probabilities {p,,,(s), s=1~5} and calculate the average
number of bits needed per source symbol 1 according to
formula (5).

FIGS. 3a and 35 show the comparison of the rate-distortion
performance between the above proposed technical solution
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and two conventional techniques based on random Gaussian
sensing matrix, Lasso algorithm and Bayesian framework,
respectively. The minimum number of bits needed per source
symbol for lossless recovery is also shown for reference.

Here, set p,=0.1 and 0.05, and fix the iteration number at 5.
The probabilities {p,,,,,(s)} are listed in Table 1.

TABLE 1

10

observed that the proposed technique can achieve much better
rate-distortion  performance than the conventional
approaches based on random sensing matrix and convex
relaxation/Bayesian framework.

FIG. 4 shows a flowchart of processing analog sparse sig-
nals according to another embodiment.

5

The probabilities of {p,_,.(s)} after quantization.

Pguan(l) Pauan(2) Pouan3)  Pauan®) Pauan(®)

(x<-04) (-04<x<0) (x=0) (0<x<04) (04<x)

p;=0.1 proposed L =10 0.0999 0.2321 0.3341 0.2325 0.1014
L=12 0.0967 0.2665 0.2656 0.2685 0.1027

conventional 0.1048 0.3952 0 0.3966 0.1034

p;=0.05 proposed L=10 0.0527 0.1528 0.5873 0.153 0.0542
L=12 0.0503 0.1845 0.5253 0.187 0.0529

conventional 0.0364 0.4642 0 0.4629 0.0365

From the table 1, the number of bits needed per source 20

symbol 1 can be calculated. Adjust D from 1 to 4 and L. from
10 to 12 to obtain different values of | from 0.14 to 1. The
distortion, denoted by &, is measured as follows, which equals
the average number of incorrect entries in ¥={%,} normalized
by N.

) 12

4

1 IS 2
NE( 1% =x112)

For reference, itis shown in FIG. 3 the minimum number of
bits needed per source symbol for lossless compression via
entropy coding. The rate-distortion performances of two con-
ventional approaches are also included, which are based on
random Gaussian sensing matrices, and employ convex relax-
ation (please refer to [R. Gribonval and M. Nielsen, “Highly
sparse representations from dictionaries are unique and inde-
pendent of the sparseness measure,” Aalborg Univ., Aalborg,
Denmark, Tech. Rep., October 2003.], and [J. A. Tropp, “Just
relax: Convex programming methods for identifying sparse
signals in noise,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp.
1030-1051, March 2006.] for details), and Bayesian frame-
work (please refer to [S. Ji, Y. Xue and L. Carin, “Bayesian
compressive sensing,” IEEE Trans. Signal Processing, vol.
56, no. 6, pp. 2346-2356, June 2008.], and [M. E. Tipping,
“Sparse Bayesian learning and the relevance vector
machine,” Journal of Machine Learning Research, vol. 1, pp.
211-244, September 2001.] for details), respectively, for sig-
nal recovery. For convex relaxation, we use the Lasso algo-
rithm (please refer to [M. J. Wainwright, “Sharp thresholds
for high-dimensional and noisy sparsity recovery using
11-constrained quadratic programming (Lasso),” IEEE
Trans. on Inform. Theory, vol. 55, pp. 2183-2202, May
2009.], and [R. Tibshirani, “Regression shrinkage and selec-
tion via the lasso,” Journal of the Royal Statistical Society,
Series B, pp. 267-288, 1996.] for details). For the Bayesian
framework based algorithm, the technique introduced in the
paper {S. Ji, Y. Xue and L. Carin, “Bayesian compressive
sensing,” IEEE Trans. Signal Processing, vol. 56, no. 6, pp.
2346-2356, June 2008 } is used. Both conventional
approaches use a similar quantization rule as in formula (11)
except removing the quantization level dedicated to “0”, as in
this case each measurement is very unlikely to be “0”. The
probabilities {p,,,,(s), s=1~5} for the conventional
approaches are also listed in Table 1. From FIG. 3, it is

In Step S41, a linear measurement (i.e. encoding) is per-
formed to a length-N K-sparse signal vector x with a MxN
measurement matrix A to obtain a length-M measurement
vector y, wherein K<<N, M<<N, and the K-sparse signal

55 vector x={x,}eR ¥, the measurement vector yeR *.

According to the theory of compressive sensing, x can be
recovered from the measurement vector y as below,

y=Ax (13)
30
In this embodiment, the measurement matrix A is designed
as follows:

35 Al (14)

A=| Ayl

Apll
40 prp

wherein A I1 {d=1~D) is a sub-matrix of the measurement
matrix A, IT, is a NxN random permutation matrix, and A, is

45 anIxN matrix which designed as follows:

(d)

(d)
ayy...

af (15)
Ad

50 (d)

()
agy..-

asr

wherein J* =N, the measurement symbols generated from
the same permutation matrix are referred to as one dimension,
and the D is the total dimension number. Clearly, the mea-
surement matrix A generated in this way is sparse with only D
non-zero entries per column.

55

The encoding operation can be implemented as follows.
60 The source symbols in the digital sparse signal vector x are
independently permutated D times. Every permutated version
is divided into J=N/L groups, each containing [. symbols. The
symbols in the jth group of the dth permutated version are
weighted by the corresponding non-zero entries in the jth row
of A, and then linearly superimposed to generate the jth
measurement in this dimension. Denote by y]@ (G=1~J) the
jth measurement symbol in the dth dimension, which have
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(16)

L
(d) (d) a(d)
yi = Z A X(-1)L+1
=1

where ¥ 9={%,?, i=1~N} is the dth permutated version of
x. Let I1 (i) be the index of x, in the dth permutated version
and TT,7!(i) the inverse operation, which have

$r100 =, and £P=xp; 11, 17

Every source symbol x; in the sparse signal vector X is
associated with D measurements, each in one dimension. The
total measurements number (i.e. sketch length) M is deter-
mined by the group length L, the dimension number D, and
the source signal length N as M=ND/L.

From formula (16), it can be seen that the measurement
matrix A has only D non-zero elements in each column. Also
note that only non-zero elements of x lead to addition and
multiplication operations in encoding. Therefore, the encod-
ing complexity of the proposed technique is about DK mul-
tiplications and DK additions.

The block diagonal structure of {A_} in formula (15) and
the random permutation matrices in D dimensions lead to the
following features of the measurement symbols, which are
very useful in signal recovery. For the convenience of discus-
sion, it is defined the degree of a measurement symbol as the
number of non-zero source symbols associated with it. From
(16) it can be seen that each measurement symbol yj("o is
associated with only L source symbols {X,_,,,,,?, 1=1~L},
therefore it is easy to verify that the following two issues have
relatively large probabilities to happen.

Issue-1: A measurement symbol has a degree of 0.

Issue-2: For a non-zero source symbol, at least two of its
associated measurements have a degree of 1 (assume Dz2).

The probabilities of the above two issues can be calculated
as follows. Let p,=K/N, and p,=1-p,. p, and p, represent the
probabilities of a source symbol being non-zero and zero,
respectively. Then the probabilities of issue-1 and issue-2 can
be approximately calculated as

Mo 1®

L
Pissue-1 = P5 =( N

and

D
D
E L1 L-1)\(D-m)
Pigsuer ® (m](PE) W= phPT =
=2
D
(D
2.0

m=2

a9

](#)mml)(l _ (¥)(H)]mw)

It is easy to see that when K<<N;, the two probabilities can
be made relatively large by selecting proper values for [ and
D. For example, when K=100, N=1000, =10, and D=4,
P 1=34.87% and P, ., ,=50.29%.

In the case of issue-1, the measurement symbol is zero.
Also notice that if a measurement symbol is associated with
one or more non-zero source symbols, these non-zero sym-
bols are very unlikely to complete cancel each other (see
formula (16)), so the measurement symbol has a probability
close to 1 of being non-zero. Therefore if a zero measurement
symbol appears, it can be deduced that all source symbols
associated with it are zeros.

In the case of issue-2, the two 1-degree measurements of
the non-zero source symbol are related as follows. Suppose

10
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that a non-zero source symbol x; has two 1-degree measure-
ments in dimensions d, and d,. Denote j,““~=II1, (i)-1)/LI
and 1,“=mod(IT, (i)-1,L)+1 for m=1 and 2. The values of
these two l-degreg measurements have the following rela-
tionship

Ky
d
o
X = S =@
d d, d d
jf 1)74 1) jf 2)74 2)

(dp)

(20)
y f‘_(dz)

Clearly the value of x, can be calculated from formula (20).

Based on the above discussion of issues 1 and 2, then in
Step S42, for each element }N/j("o in ¥ (d=1~D, j=1~)), it is
judged whether the }N/j("o equals to 0; and if the }N/j("o equals to
0, setting Xyg -1 1y2,»~0, for IF1~L, wherein ¥ is initialized
as ¥=y; and

for each source symbol x, in the sparse signal vector x, for
i=1~N, it is judged whether the following equation is satis-
fied,

~(dy)
yj(_ﬁn)
AT T g =1~Dd=1~D,dy,d,
AU A
) ) ) @

5@m)
yj(_dm) @b

and if it is satisfied for a pair of (d,,,, d,,), setting

()
}’.(_Qnm)

R R
R :
i) )

Then in Step S43, ¥ is updated by subtracting the recovered
sparse signals from the measurement vector y, by following
formula:

J=y-A% (22)

wherein X represents the recovered sparse signal vector, in
which the un-recovered symbols are set to O.

Such an interference cancellation operation will help the
recovery of other symbols in two ways. Firstly, if a measure-
ment symbol has all but one associated source symbols recov-
ered, then the only un-recovered source symbol can be
directly estimated from the measurement (after interference
cancellation). Secondly, if a non-zero source symbol is sub-
tracted from y, the degrees of its associated measurements are
decreased by 1. This might introduce new cases of issues 1
and 2 in ¥, so the above two rules can be applied again to
re-generate more source symbols from §. This motivates the
use of an iterative process along with interference cancella-
tion to recursively recover X.

Then, in Step S44, above Steps S42 and S43 are repeated
for a plurality of iterations until a predetermined condition is
satisfied.

The predetermined condition may for example comprise
any of the followings:

a fixed number of iterations has been reached;

successful recovery of all source symbols in the sparse

signal vector;

X, o =X, Wherein X ,, and X,,.,, represent X before and

after one iteration.

The complexity of the above proposed iterative algorithm
in this embodiment is O(N).
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In the following text, the performance of above proposed
technical solution is illustrated using numerical results. Con-
sider sparse source signals x with Gaussian random variables
as non-zero elements. The measurement matrix A is gener-
ated according to formula (14) and (15), with Gaussian ran-
dom variables as non-zero entries. In the simulation, set
p;=K/N=0.1 and 0.05, and the dimension number D=4. The
group length L is adjusted to get different sketch lengths M.
The iterative recovery process is terminated when any one of
the following three conditions is met: a) T=20 iterations are
researched; b) all source symbols have been successfully
recovered; ¢) X, =X_,; with X _,, and X,,_,, the version of X
before and after one iteration. The average iteration number is
T,,.=6~10, depending on M/N.

FIG. 5 shows the relationship between the measurement
number M and K log,(N/K). The purpose of this figure is to
show that the proposed technique can achieve the lower
bound of the sketch length O(K log 2(N/K)). It is shown in
FIG. 5 that for the above proposed technical solution, the
required number of measurements M grows linearly with the
signal length N. Here, set N from 1000 to 10000, and M is
selected to guarantee a recovery failure probability no larger
than 0.01. Note that a recovery failure occurs when |[X,,,,,—
x|, *>1072, where X ,,, ,, denotes X after the final iteration.
FIG. 5 clearly shows that the proposed technical solution can
empirically achieve the sketch length lower bound of oK
log,(N/K) with a very small value of . around 0.6~0.8.

FIGS. 6a and 65 show the relationships between the recov-
ery failure probability and a (i.e., the sketch length) for the
above proposed technical solution. Here, fix N=4000 and
change o from 0.5~1.2. For comparison, it is also shown in
FIG. 6 the recovery failure probability for existing recovery
algorithms based on 1, magic and Bayesian framework. As it
is can be seen, to achieve the same recovery accuracy, the
above proposed technical solution requires much less mea-
surements than the I, magic and Bayesian framework. Such a
good sketch length is achieved with a linear complexity. The
good empirical performance and linear recovery complexity
make the proposed technique a potential and attractive solu-
tion to compressive sensing with sparse matrices.

The technical solution of the invention has been described
above from the perspective of methods, and hereinafter the
technical solution of the invention will be further described
from the perspective of apparatus.

According to one embodiment of the invention, there is
further provided an apparatus for measuring and recovering
sparse signals. The apparatus comprises: a measuring means,
for performing a linear measurement to a length-N sparse
signal vector x={x,} with a MxN measurement matrix A to
obtain a length-M measurement vector y, wherein the mea-
surement matrix A is denoted by:

Ally

A=| Ayl

Apllp
wherein A _I1, is a sub-matrix of the measurement matrix

A, for d=1~D, I1, is a NxN random permutation matrix, and
A, is an JxN matrix which is denoted by:
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(d) (d)
Ll G

(d) (d)
1--agy

wherein M<<N, J*L.=N;, the measurement symbols gener-
ated from the same permutation matrix are referred to as one
dimension, and the D is the total dimension number; and

a recovering means, for recovering the length-N sparse
signal vector x={x,} from the length-M measurement vector
y.

Advantageously, when the sparse signals are digital sparse
signals and each entry X, in the sparse signal vector x is taken
from a finite set Q={X,=0, X, ..., X, } with X_anon-zero
figure, for g=1~Q-1, and Q the size of the set, the recovering
means may further comprise: a detecting means including D
maximum likelihood detectors, for respectively performing
maximum likelihood detection for D dimensions, wherein the
dth maximum likelihood detector is used for performing
maximum likelihood detection for the dth dimension;
wherein the detecting means repeats above detection for a
plurality of iterations until a predetermined condition is sat-
isfied; and an estimating means, for estimating the source
symbols in the sparse signal vector based on the output of the
Dth maximum likelihood detector in the last iteration.

To be specific, for the dth dimension, the dth maximum
likelihood detector in the detecting means is used for per-
forming a maximum likelihood detection, based on the mea-
surement symbols of the dth dimension and a prior informa-
tion in the dth dimension, to generate a posterior information
of'the source symbols in the sparse signal vector, wherein the
aposterior information generated in the dth dimension is used
for updating a prior information in the (mod(d, D)+1)th
dimension.

Preferably, the a posterior information p‘”(x,=X o) in the
dth dimension is used for updating the a prior information
plroddDIe iy =X 2) in the (mod(d, D)+1)th dimension, by
following formula:

POmeA@DID e Z X =@ =X )femed @D X )

wherein the e(°#&P+D(x =X ) 1s generated in the (mod(d,
D)+1)th dimension in the previous iteration, which represents
the extrinsic probability of x, being X in the (mod(d, D)+1)th
dimension, for g=0~Q-1, the ey =X } is initial-
ized as 1 in the first iteration, and e™°#%P )+1)(Xl-:X q):
p(MOd(d’D)+l)(Xi:Xq)/IN)(MOd(d’D)+1)(Xl-:Xq)

The predetermined condition may for example comprise
any of the followings:

a fixed number of iterations has been reached;

the difference between the a posteriori probabilities gener-

ated in the Dth maximum likelihood detector in the two
successive iterations is below a pre-defined threshold.

Advantageously, when the sparse signals are analog sparse
signals, the recovering means may further comprise:

ajudging means, for, for each element }N/j("o in ¥, for d=1~D,
j=1~J, judging whether the }N/j("o equals to 0, wherein ¥ is
initialized as $=y;
1 lang if the }N/j("o equals to 0, setting Xy ¢ 1),,=0, for

wherein II (i) is the index of x, in the dth permutated
version and IT,7'(i) the inverse operation of IT ,(i);

and

for each source symbol x; in the sparse signal vector x, for
i=1~N, judging whether the following equation is satisfied,
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) ()

¥ (Q"m) ¥y (ﬁn)
—( 3 =—(d) NVWdp=1~D,d,=1~D,d, +d,;
@ ) ) @) )

and if it is satisfied for a pair of (d,,,, d,,), setting

~(dy)
¥y (Q"m)

=
@)
a
jgdm)ylgdm)

wherein j,‘“=| (IL; (1)-1)/Ll and 1, =mod(I1 2, D-1LL)+
L

and

an updating means, for updating ¥ by subtracting the recov-
ered sparse signals from the measurement vector y, by fol-
lowing formula:

y=y-4%

wherein X represents the recovered sparse signal vector, in
which the un-recovered symbols are set to 0;

wherein the judging means repeats above judgments for a
plurality of iterations until a predetermined condition is sat-
isfied.

The predetermined condition may for example comprise
any of the followings:

a fixed number of iterations has been reached;

successful recovery of all source symbols in the sparse

signal vector;

X=X ;40 Wherein X ,, and X, .,

after one iteration.

It should be noted that the above described embodiments
are given for describing rather than limiting the invention, and
itis to be understood that modifications and variations may be
resorted to without departing from the spirit and scope of the
invention as those skilled in the art readily understand. Such
modifications and variations are considered to be within the
scope of the invention and the appended claims. The protec-
tion scope of the invention is defined by the accompanying
claims. In addition, any of the reference numerals in the
claims should not be interpreted as a limitation to the claims.
Use of the verb “comprise” and its conjugations does not
exclude the presence of elements or steps other than those
stated in a claim. The indefinite article “a” or “an” preceding
an element or step does not exclude the presence of aplurality
of such elements or steps.

represent X before and

What is claimed is:

1. A method for measuring and recovering sparse signals

comprising:

a. performing a linear measurement to a length-N sparse
signal vector x={x,} with a MxN measurement matrix A
to obtain a length-M measurement vector y, wherein the
measurement matrix A is denoted by:

Al
A= Ayglly

Apllp

16

wherein A 11, is a sub-matrix of the measurement matrix
A, ford=1~D, IT ; is a NxN random permutation matrix,
and A ; is an JxN matrix which is denoted by:

(d) (d)
ayj..-a; 0

(d)

(d)
0 aj1---ayL

10

wherein M<<N, J*L.=N;, the measurement symbols gener-
ated from the same permutation matrix are referred to as
one dimension, and the D is the total dimension number;
and

b. recovering the length-N sparse signal vector x={x,} from

the length-M measurement vector y.

2. A method according to claim 1, wherein when the sparse
signals are digital sparse signals and each entry X, in the sparse
signal vector x is taken from a finite set Q={X,=0, X, . . .,
X .1} withX_ anon-zero figure, for =1<Q-1, and Q the size
of the set, the step b comprises:

bl. using D maximum likelihood detectors to respectively

perform maximum likelihood detection for D dimen-
sions, wherein the dth maximum likelihood detector is
used for performing maximum likelihood detection for
the dth dimension;

b2. repeating step bl for a plurality of iterations until a

predetermined condition is satisfied;

b3. estimating the source symbols in the sparse signal

vector based on the output of the Dth maximum likeli-
hood detector in the last iteration.

3. A method according to claim 2, wherein the step bl
comprises:

for the dth dimension, performing a maximum likelihood

detection, based on the measurement symbols of the dth
dimension and a prior information in the dth dimension,
to generate a posterior information of the source sym-
bols in the sparse signal vector, wherein the a posterior
information generated in the dth dimension is used for
updating a prior information in the (mod(d, D)+1)th
dimension.

4. A method according to claim 3, wherein the a posterior
information p” (x =X,) in the dth dimension is used for
updating the a prior information pUred@P(x =X ) in the
(mod(d, D)+1)th dimension, by following formula:

20

25

30

40

45

oA @D 5 = Y- p) (=X yelmod DI x =X )

wherein the e"**“*?*D(x =X ) is generated in the (mod(d,
D)+1)th dimension in the previous iteration, which represents
the extrinsic probability of x, being X in the (mod(d, D)+1)th
dimension, for g=0~Q-1, the e(’"Od(z’D)“)(xl =X ) is initial-
ized as 1 in the first iteration, and updated in the following

iterations  as e(’”Od(d’D)“)(x =X )= oN P I(x =X )/
I5(7}10«17(«17,D)+1)(X X)

50

55

5. A method according to claim 2, wherein the predeter-

mined condition comprises any of the followings:

a fixed number of iterations has been reached;

the difference between the a posteriori probabilities gener-

ated in the Dth maximum likelihood detector in the two
successive iterations is below a pre-defined threshold.

6. A method according to claim 1, wherein when the sparse

51gnals are analog sparse 51gnals the method b comprises:

i. for each element y D in §, for d= 1~D,J 1~J, judging
whether the ¥ yj equals to 0, wherein ¥ is initialized as
§=y,and ¥, 1s the jth element in the dth dimension of §/;

.ifthe §; @ equals to 0, setting X 1 1y244~0; for 1=1~L;

60

65

jard

i
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wherein II(i) is the index of x; in the dth permutated
version and TT (i) the inverse operation of TT (i);

and the method further comprise:

u. for each source symbol x, in the sparse signal vector x, for
i=1~N, judging whether the following equation is satis- >
fied,

+(dm)

+(dn)
Yy
Jgdm)

Y )
i N g4, =1~D,d,=1~D,dy%d,;
2@ 2

) ) ) )

10

v. if it is satisfied for a pair of (d,,, d,,), setting

15

~(dm)
}’.(_'d"m)
) B
NE @ ’
() ()
i
20

wherein ji(d”):I(Hdm(i)—l)/LI and 1 =mod(IT 4, O-LL)+
1;

and after above steps, the method further comprises:

p- updating ¥ by subtracting the recovered sparse signals
from the measurement vector y, by following formula:

Fy-4%

wherein X represents the recovered sparse signal vector, in
which the un-recovered symbols are set to 0;

g. repeating above steps for a plurality of iterations until a
predetermined condition is satisfied.

7. A method according to claim 6, wherein the predeter-

mined condition comprises any of the followings:

a fixed number of iterations has been reached;

successful recovery of all source symbols in the sparse
signal vector;

X=X, ;o WhereinX ,,and¥,,,,, represent X before and after
one iteration.

8. An apparatus for measuring and recovering sparse sig-

nals comprising:

a measuring means, for performing a linear measurement
to a length-N sparse signal vector x={x,} with a MxN
measurement matrix A to obtain a length-M measure-
ment vector y, wherein the measurement matrix A is
denoted by:

30

35

40

N
v

50
AL

A=| Ay

Apllp

wherein A I1, is a sub-matrix of the measurement matrix
A, for d=1~D, I1, is a NxN random permutation matrix,
and A ; is an JxN matrix which is denoted by:

(d) (d)
ajj---arL 0
A= 65
() (d)
0 ajy...ayp
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wherein M<<N, J*L.=N;, the measurement symbols gener-
ated from the same permutation matrix are referred to as
one dimension, and the D is the total dimension number;
and

a recovering means, for recovering the length-N sparse
signal vector x={x,} from the length-M measurement
vector y.

9. An apparatus according to claim 8, wherein when the
sparse signals are digital sparse signals and each entry x, in the
sparse signal vector x is taken from a finite set Q={X,=0,
X,, ..., X, } with X, a non-zero figure, for g=1~Q-1, and
Q the size of the set, the recovering means comprises:

a detecting means including D maximum likelihood detec-
tors, for respectively performing maximum likelihood
detection for D dimensions, wherein the dth maximum
likelihood detector is used for performing maximum
likelihood detection for the dth dimension;

wherein the detecting means repeats above detection for a
plurality of iterations until a predetermined condition is
satisfied;

an estimating means, for estimating the source symbols in
the sparse signal vector based on the output of the Dth
maximum likelihood detector in the last iteration.

10. An apparatus according to claim 9, wherein for the dth
dimension, the dth maximum likelihood detector in the
detecting means is used for performing a maximum likeli-
hood detection, based on the measurement symbols of the dth
dimension and a prior information in the dth dimension, to
generate a posterior information of the source symbols in the
sparse signal vector, wherein the a posterior information gen-
erated in the dth dimension is used for updating a prior infor-
mation in the (mod(d, D)+1)th dimension.

11. An apparatus according to claim 10, wherein the a
posterior information p@(x,=X ,)inthedthdimension is used
for updating the a prior information p**“““?*D(x=X ) in
the (mod(d, D)+1)th dimension, by following formula:

POmeA@DID e Z X =@ =X )femed @D X )

wherein the e("o#-? )“)(xl.:Xq) is generated in the (mod
(d, D)+1)th dimension in the previous iteration, which
represents the extrinsic probability of x, being X, in the
(mod(d, D)+1)th dimension, for gq=0~Q-1, the
glmedld.D )“)(xl.:Xq) is initialized as 1 in the first itera-
tion, and updated in the following iterations as
e(MOd(d’D)+l)(Xl-:Xq):p(MOd(d’D)+l)(Xi:Xq)/IN)(MOd(d’D)+1)
(Xi:Xp)'

12. An apparatus according to claim 9, wherein the prede-
termined condition comprises any of the followings:

a fixed number of iterations has been reached;

the difference between the a posteriori probabilities gener-

ated in the two successive iterations is below a pre-
defined threshold.

13. An apparatus according to claim 8, wherein when the
sparse signals are analog sparse signals, the recovering means
comprises:

ajudging means, for, for each element }NIJ@ in ¥, for d=1~D,

j=1~J, judging whether the }N/j("o equals to 0, wherein ¥ is
initialized as ¥=y, and }N/j("o is the jth element in the dth
dimension of ¥;

and if the }N/j("o equals to 0, setting Xp 1(;_1y24~0, for

1=1~L;

wherein II (i) is the index of x, in the dth permutated

version and TT ;7! (i) the inverse operation of 1T, (i);
and

for each source symbol x; in the sparse signal vector x, for

i=1~N, judging whether the following equation is satis-
fied,
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anupdating means, for updating ¥ by subtracting the recov-

@ “ ered sparse signals from the measurement vector y, by
Sm (e

Y ) Y tdn) following formula:
— = ———— Vdy=1~D,d,=1~D, dy # dy; S ~
am) o) J=y-A%
) )9 ) ) s ] ) )
wherein X represents the recovered sparse signal vector, in
which the un-recovered symbols are set to 0;
e . . . wherein the judging means repeats above judgments for a
and if it is satisfied for a pair of (d,, d ), setting SO JHCSING ep JuCe ISP
m plurality of iterations until a predetermined condition is
satisfied.
10 14. An apparatus according to claim 13, wherein the pre-
i determined condition comprises any of the followings:
X = %, a fixed number of iterations has been reached;
@ () ) successful recovery of all source symbols in the sparse

signal vector;
15 X,..,=X,,» wherein X ,, and X, represent X before and

wherein ,“”=|(T1, (1)-1)/L| and L“’=mod(11, (i -1,L)+ afier one iteration.
Ji d, i dy,

; #* #* #* #* #*



